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Abstract

Ecosystem function is maintained in part by direct species interactions, but

indirect interactions and non-consumptive effects may be of equal ecological

importance. Along the west coast of North America, the recent population col-

lapse of the predatory sunflower sea star Pycnopodia helianthoides has been

implicated in the proliferation of the purple sea urchin Strongylocentrotus

purpuratus, and a concurrent decline in kelp canopy cover in several locales.

Recent work began to quantify the predation rates effects (i.e., direct consump-

tive effects) of Pycnopodia on sea urchins that may lead to density-mediated

indirect effects on kelp. However, the importance of non-consumptive effects

on urchin behavior and the possible trait-mediated indirect effects of

Pycnopodia on kelp are not well understood. This leaves a critical gap in our

knowledge about how these predators may be controlling grazer populations

and, indirectly, primary production by macroalgae in nearshore habitats. We

measured the non-consumptive behavioral effects of Pycnopodia on

S. purpuratus in the laboratory including grazing rates, feeding behavior, and

movement of starved versus fed urchins, the latter simulating urchin metabolic

conditions within urchin barrens. We found that the presence of a waterborne

Pycnopodia cue reduced the grazing rate of fed urchins by 50% over short

(~24 h) time scales. In contrast, starved urchins consumed kelp and did not

exhibit an escape response in the presence of a Pycnopodia cue. This study

highlights a trait-mediated indirect interaction between Pycnopodia,

S. purpuratus, and kelp, showing how the urchin response to a predator cue

may differ based on urchin metabolic conditions or ecosystem state, and helps

clarify the positive role of Pycnopodia on kelp forest health.
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INTRODUCTION

In marine ecosystems, non-consumptive effects (NCEs)
have been implicated in a range of predator–prey interac-
tions (Werner & Peacor, 2003). Predatory cues propagate
through these systems via various pathways such as visual,
auditory, or chemosensory pathways. Chemosensory cues
proliferate as water flow carries the “cue” of the predator
through the water and can change the behavior of organ-
isms across the seafloor as they encounter it (Kats &
Dill, 1998). As such, a single predator may have a
“larger” effect (i.e., multiple prey species responding) via
this non-consumptive interaction than with consumption
of a single prey item. Chemosensory cues can act as
NCEs and may trigger various physiological and behav-
ioral responses in the prey. Physiological responses may
include metabolic changes (Hawlena & Schmitz, 2010),
reduced fecundity (Bourdeau et al., 2016), and impaired
growth (Werner & Peacor, 2003), while behavioral chan-
ges can include reduced foraging time (Werner & Peacor,
2003), increased crypsis (Scheibling & Hamm, 1991), and
more frequent escape response (Freeman, 2006). All
these effects can be experienced individually, or simulta-
neously, and can have serious consequences for the prey
species. The frequency of encounters with a predator cue
may also produce various responses in the potential prey.
Continuous exposure to a predator cue could result in a
prolonged high-stress state on the one hand, or gradual
habituation on the other (Dehaudt et al., 2019;
Van Dievel et al., 2016). In addition, the preexisting phys-
iological state of an organism can modulate the specific
response to a predator. This is seen, for example, when a
hungry prey species is more willing than a fed one to risk
predation in order to obtain food (Vadas et al., 1994).

NCEs of predators can scale up to the ecosystem level
as an analog to the classic trophic cascade based on con-
sumptive predation pressure (e.g., Ripple et al., 2016).
Frequently, trait-mediated indirect interactions (TMIIs)
act via NCEs through the modification of a grazing prey
species’ feeding behavior, relieving the grazers’ food
source from grazing pressure (Gravem & Morgan, 2019;
Haggerty et al., 2018). The so-called “ecology of fear” can
have dramatic effects on ecosystem productivity, chang-
ing foraging times and grazing rates of important con-
sumers in a suite of habitats (Brown et al., 1999).

The recent population collapse of the generalist inver-
tebrate mesopredator Pycnopodia helianthoides (hereafter
Pycnopodia) due to sea star wasting disease has been
implicated as a contributing factor to the proliferation of
the grazing purple urchin, Strongylocentrotus purpuratus,
after its release from Pycnopodia predation across much
of the west coast of North America (Burt et al., 2018;
Galloway et al., 2023; Hamilton et al., 2021;

Harvell et al., 2019). This effect has been most
pronounced along the central and southern end of the
range of both Pycnopodia and S. purpuratus along the
Oregon and California coasts, although similar pat-
terns have been observed between Pycnopodia and red
urchins (Mesocentrotus franciscanus) and green urchins
(Strongylocentrotus droebachiensis) farther northward into
British Columbia (Burt et al., 2018; Rogers-Bennett &
Catton, 2019; Schultz et al., 2016).

Pycnopodia preys upon a variety of sea urchins, inclu-
ding S. purpuratus (Herrlinger, 1983; Mauzey et al., 1968;
Shivji et al., 1983). S. purpuratus employ a less effective
defense strategy against Pycnopodia predation compared
to other sympatric urchin species (esp. M. franciscanus),
typically relying on their pedicellaria and fleeing response
to deter a predator rather than using their spines, which
may make them more prone to predation (Moitoza &
Phillips, 1979). NCEs from Pycnopodia chemical cues may
add to the response of urchins in addition to removal via
direct consumption (Freeman, 2006). Pycnopodia is only
one among a suite of potential predators of S. purpuratus,
although the geographic extent and identity of urchin
predators change across their range. The spiny
lobster (Panulirus interruptus) and California shee-
phead (Semicossyphus pulcher) are constrained to the
southern end of S. purpuratus’s range (Tegner & Dayton,
1981), while the wolf eel (Anarrhichthys ocellatus;
Marliave, 1987) and sea otter (Enhydra lutris; Smith
et al., 2021) are found in low densities or are not uniformly
distributed across the seascape. As such, the coincident pop-
ulation decline of Pycnopodia has been implicated in the
concurrent increase in urchin populations in the North
American west coast, though additional factors including
warming water and increased urchin recruitment are also
implicated in the recent urchin population surge (Burt
et al., 2018; Rogers-Bennett & Catton, 2019).

The decline of kelp forests by up to >90% across the
central North American west coast, particularly in
Northern California, has been attributed, in part, to
predation release on grazing urchins, and has been
suggested to be a trophic cascade (Rogers-Bennett &
Catton, 2019; Schultz et al., 2016). The resulting mosaic
of kelp forests and urchin barrens is marked by
decreased primary productivity, low food web complex-
ity, and a reduction in abundances of economically
important species such as abalone (Filbee-Dexter &
Scheibling, 2014; Rogers-Bennett & Catton, 2019; Schultz
et al., 2016). Urchins within these barrens can maintain this
alternate stable state when the reduced kelp biomass leads
to starvation, and constant grazing inhibits the regrowth of
kelp and other macroalgae (Dolinar & Edwards, 2021;
Estes & Duggins, 1995; Filbee-Dexter & Scheibling, 2014;
Spindel et al., 2021).
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Although the direct consumptive effect of Pycnopodia
on urchins is an important pathway of grazer control
(Bonaviri et al., 2017; Galloway et al., 2023), behavioral
responses by urchins to predation cues suggest that NCEs
may also play a key role in suppressing sea urchin
grazing behavior (Bernstein et al., 1981; Duggins, 1983;
Lee et al., 2016; Moitoza & Phillips, 1979). In addition,
higher concentrations of urchins in urchin barrens can
increase their hunger state and their response to food and
predator cues, resulting in potentially complex behaviors
(Parnell et al., 2017). However, the potential for Pycnopodia
to have NCEs on sea urchin behavior and grazing rates
has not been quantified. Understanding how and to what
degree Pycnopodiamay alter sea urchin grazing can provide
important insights into their role in maintaining healthy
kelp forest ecosystems through TMII. To address these
knowledge gaps, we asked the questions: (1) Do NCEs
between Pycnopodia and S. purpuratus alter the feeding
rates of the urchins (feeding experiment)? (2) Does the
hunger state of S. purpuratus change their response to food
in the presence of a predator cue (starvation experiment)?

MATERIALS AND METHODS

Feeding experiment organism collections

Purple sea urchins (S. purpuratus) were collected at Lopez
Island (48.4558, −122.9383) in the San Juan Archipelago
of Washington State on September 11, 2020 (71 urchins)
through a permitting arrangement between the Friday
Harbor Labs and Washington State (Washington State
House Bill 68, R.C.W.28.77.230, 1969 Revision R.C.W.
28B.20.320). Collections were made by hand on SCUBA
between 3 and 8 m below mean lower low water (MLLW)
in bull kelp (Nereocystis luetkeana) stands on bedrock.
Urchins were then held for two days in flow-through sea
water tanks (60 × 90 × 30 cm width × height × depth)
before experimentation beginning on September
13, 2020. Urchins were shaded from direct sunlight and
fed N. luetkeana blade tissue ad libitum while in holding.

Pycnopodia were collected at Goose Island in the San
Juan Archipelago (48.4575�, −122.9544�) on July 29, 2020
at a depth of 6 m below MLLW through the same permit-
ting as above. It was important to minimize collection of
Pycnopodia due to the very low abundance of this species
after the sea star wasting decline and to minimize possi-
ble local, ecological effects of removing what is now a
threatened species per the IUCN (Gravem et al., 2021).
Pycnopodia were transported following lab and handling
protocols described in Hodin et al. (2021) in covered
5-gallon buckets filled with seawater and placed
in shaded flow-through seawater tanks for 6 weeks
(120 × 40 × 45 cm width × height × depth) prior to

experimentation. They were fed a maintenance diet of
two mussels (Mytilus spp.) every other day prior to exper-
imentation, and in-between trials during experimentation
following lab and handling protocols described in Hodin
et al. (2021).

Feeding experiment setup

To determine whether there are NCEs of Pycnopodia on
S. purpuratus feeding rates, five replicate feeding trials
were run between September 13 and October 2, 2020,
each lasting from 51 to 69 h in shaded outdoor tanks.
Across all trials, two different individual Pycnopodia were
used to generate the chemical cue for the Pycnopodia
water treatments (both Pycnopodia were approximately
the same size, ~42 cm in diameter). All urchins (n = 71)
were used in the experiment only once to ensure inde-
pendence of replicates. S. purpuratus test diameters were
measured with hand calipers to the nearest millimeter,
and urchins were assigned to two experimental groups
(Pycnopodia exposure or control). The experimental
setup, including organism arrangement, tanks, and
plumbing, was modified after the initial Trial 1 to reduce
stress on the Pycnopodia, but the effective predator cue
treatments remained consistent between trials, so they
were analyzed as replicate experiments. For Trial 1, five
urchins were placed in each of three tanks (circular:
50 cm depth × 104 cm diameter); one of these tanks
contained a caged Pycnopodia so that chemical cues were
released into the tank but no physical interaction with
the urchins was possible. The other two tanks served as
controls (one a “cage control” with an empty predator
enclosure, the other without an enclosure) without a
Pycnopodia. For Trials 2–5, 14 urchins were evenly dis-
tributed into two tanks (seven urchins per tank; circular:
30 cm depth × 104 cm diameter). One of these tanks
received a predator cue via effluent from a header tank
containing Pycnopodia (Figure 1a) to the urchin
tank while the other served as a control and received
plain seawater (no cue). Urchins within a tank in all
treatments were individually contained within buckets
perforated with multiple small holes on the sides and top
of each container (<1 cm diameter each) to maintain
water flow within each, while preventing interactions
among urchins in the tank (Figure 1a). Water flow rate
into experimental tanks was 3.89 ± 0.46 L min−1, water
temperature during the experiment was 10.0 ± 0.16�C,
salinity 30.54 ± 0.81 ppt, as measured by the Friday
Harbor Labs Ocean Observatory, and ambient light was
an 11:13 h light:dark cycle.

Each urchin in the individual tank buckets was
fed 12 standardized circular pieces of kelp “confetti”
(21 mm diameter) created by using a cork punch on
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F I GURE 1 Setup for (a) urchin feeding and (b) urchin movement experiments. All treatment combinations are shown for each

experiment in tables. The urchin grazing behavior setup depicts the “fed urchin with algae” treatment, and the flow diagram shows

general flow created by water inflow located at the center-bottom of the arena, and outflow at the center-top. Two identical “urchin
arenas” were used for the grazing behavior experiment to allow for tank cleaning between trials, but only one is shown here for

clarity.
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vegetative N. luetkeana (hereafter kelp) blade tissue. A
subsample of kelp confetti was weighed at the beginning
and end of the experiment to estimate the biomass of
kelp consumed, and a subset of trials (n = 4) contained
additional control confetti held separately from urchins
that were weighed before and after each trial to detect
changes in confetti weights that were not related to
urchin feeding. Urchins in each experimental unit were fed
kelp confetti ad libitum and their consumption rates
tracked by counting the number of intact confetti pieces
and estimating proportion of partially consumed pieces
present at three time points per day (08:00, 14:00, 20:00)
for up to 3 days. Kelp confetti had a mean biomass of
0.341 ± 0.030 g per disk (n = 49), and control confetti
weights were not statistically different before and after
trials (linear mixed-effects model [lme], denominator
df = 92, t = 0.45, p = 0.65) and so were not used as a cor-
rection factor when considering biomass loss. Any con-
sumed confetti were replaced with fresh confetti to
maintain a total of ~12 pieces per urchin. Trial 1 had to be
stopped after 51 h as the experimental conditions induced a
stress response in the Pycnopodia, while all remaining trials
were run for 69 h.

Starvation experiment organism
collections

S. purpuratus were collected at Lopez Island (48.4558�,
−122.9383�) in the San Juan Archipelago of Washington
State on June 11, 2021 (49 urchins) under Friday Harbor
Laboratories (FHL) permitting (see above). Collections
were made by hand using the same protocols as above,
and urchins were then held in flow-through seawater
tanks (circular: 30 cm depth × 104 cm diameter) before
being moved into the experimental tanks (rectangular:
60 × 90 × 30 cm WHD).

For the starvation experiment, a different Pycnopodia
individual (approximately 40 cm diameter) was collected
under the FHL docks (48.54532, −123.01192) on July
3, 2021 via SCUBA at a depth of 4 m below MLLW under
the FHL permit. This single Pycnopodia was used to gener-
ate the predator-cue treatment water for this experiment to
minimize effects of collection on wild populations of this
endangered species. The sea star was transported in a
shaded 5-gallon bucket filled with seawater and then held
in a partially shaded flow-through seawater tank
(120 × 40 × 45 cm WHD) before experimentation.

Starvation experiment setup

The diameters of all S. purpuratus (n = 49) were mea-
sured using calipers and then separated haphazardly into

two groups: “fed” and “starved.” “Fed” urchins were fed
kelp, ad libitum, and starved urchins were not fed for
seven weeks while in holding. This time frame has been
previously documented to result in different gonadal
conditions among urchin feeding groups (Galloway
et al., 2023). At the end of the starvation period, all
urchins were used in individual trials, placing starved
(n = 25) and fed urchins (n = 24) separately into one of
two identical circular aquaria “arenas” (30 cm depth
× 104 cm diameter), respectively, in which individual
urchin movement and behavior was tracked over 1 h.
The 1-h time frame was selected to capture the short-term
(i.e., in minutes) response of the urchins to the cue. There
were a total of eight treatments in a factorial design crossing
urchin treatment (fed vs. starved), Pycnopodia cue (cue
vs. no cue), and kelp treatment (kelp vs. kelp replica;
Figure 1b). The Pycnopodia cue was delivered as effluent
from a header tank containing one Pycnopodia
(120 × 40 × 45 cm WHD) and “control” no-cue water
from a header tank with no Pycnopodia (same dimen-
sions). In kelp-present trials, a 55 × 4 cm kelp strip was
wrapped around an inverted perforated sampling cup
through which the header source water flowed into the
experimental arena. In no-kelp control treatments a kelp
replica (55 × 4 cm plastic sheeting material) was wrapped
around the entry point of the header water source. In all
cases, the centrally placed header Pycnopodia cue inflow
and kelp/replica location is referred to as the “cue
source.”

All inflow of water during each 1-h trial came from
the header tank. Water temperature (12.9 ± 1.19�C),
and light flux (1922 ± 1166 lx) were measured using a
HOBO TidbiT v2 Data Logger (Onset, Bourne, MA,
USA), and salinity (31.1 ± 1.46) was measured using a
hand refractometer. Experimental flow rates were stan-
dardized to 2.5 L min−1. Patterns of flow diffusion
within each experimental unit were visualized intermit-
tently between trials using fluorescein dye injected at
the outflow of the header tank to confirm constant flow
and even distribution of the cue. Each treatment was
run at least six times with naive urchins for all eight
possible combinations, and one trial was rerun due to a
malfunctioning camera, for a total of 49 individual tri-
als. Urchins were observed in 1-min intervals for each
1-h trial for the following target behaviors: movement
(not moving or moving); interacting with central cue
(interacting, not interacting); where interacting was
defined as at least one tube foot touching the cue
source (kelp or kelp replica) and is used as proxy for
food-seeking behavior. Quantity of kelp consumed
(in trials with kelp) was calculated as the reduction in
surface area of experimental kelp strip from known
dimensions after the trial was concluded using photos
taken with a scale bar and processed in ImageJ
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(Schneider et al., 2012). Experimental arenas were
drained, rinsed with fresh water, and scrubbed by hand
between all trials to eliminate cross-contamination of
chemosensory cues.

Trials were also recorded with GoPro cameras
(HERO4 Silver; San Mateo, CA, USA) with a medium
FOV setting. Videos of each trial were processed in the
video analysis software Tracker (Brown et al., 2020)
using the AutoTracking function. The path of
each urchin was extracted as x and y coordinates
in 3.3-s increments and calibrated to a bullseye of
known dimensions centered underneath the urchin
via a center of mass function in Tracker to maximize
accuracy. Total distance traveled was calculated for
each urchin using the R package adehabitatLT
(Calenge, 2006).

Statistical analysis

Data were summarized, quality controlled to detect any
data entry errors or erroneous values, and visualized
using R (R Core Team, 2022) in RStudio (RStudio
Team, 2022) with the tidyverse, adehabitatLT, and
viridis packages (Calenge, 2006; Garnier et al., 2021;
Wickham et al., 2019). Statistical analyses were
performed in R with the lme4 package (Bates
et al., 2015) and in JMP v17.0.0 (SAS Institute Inc.,
Cary, NC, USA). Both experiments used a restricted
number of Pycnopodia to generate the treatment with a
chemical cue. It was very difficult and prohibitively
time-consuming to find Pycnopodia at the time of this
experiment. It should also be noted that we did not
wish to introduce replicate “treatments” of predator
signals when at all possible as Pycnopodia were scarce,
and it would be difficult to collect enough for robust
statistical power differentiating between individual
Pycnopodia signals.

Feeding experiments

Differences in mean amount of kelp consumed per
urchin per hour between treatments over the course of
each trial were tested with a linear mixed-effects model.
The response variable of mean kelp consumed per hour
was log(x + 1) transformed to address variance heterosce-
dasticity. Fixed effects included: treatment, hour since
beginning of the trial, and their interactions. Random
effects included: urchin identity nested within treatment
and trial tank, and trial tank nested within treatment, to
account for any variation not attributed to the fixed
effects.

Starvation experiment

Urchin movement behaviors were averaged over 5-min
increments to detect any changes in behavior over the
course of each individual trial. Behaviors were assigned
binary classifications for each urchin, with 0 = not
moving or not interacting, and 1 = moving or inter-
acting to give proportion of time performing each
behavior within each increment. Both proportion of
time moving, and proportion of time interacting were
tested with a linear fixed-effects model. Fixed effects
for both responses included: urchin status (fed,
starved), Pycnopodia cue (present, absent), kelp cue
(present, absent), time increment (5–60 in 5-min steps),
and the full interaction of all these fixed effects.
Random effects included trial arena nested within
urchin status, Pycnopodia cue, and kelp cue, to account
for any variation not attributed to the fixed effects.
Feeding on kelp, when it occurred, was tested with a
linear model.

Total distance traveled by urchins during each trial
was tested with linear fixed-effects models. Fixed and
random effects were the same as above; however, time
increment was not included as the resolution of the data
was only on the level of a per-trial total.

RESULTS

Feeding experiment

Urchins exposed to a waterborne Pycnopodia cue con-
sumed 53% less kelp per hour on average (0.127 ± SE
0.005 g h−1) than urchins not exposed to a Pycnopodia
cue (0.067 ± SE 0.008 g h−1) across all trials (lme,
denominator df = 8.64, t ratio = 2.64, p = 0.0279;
Figure 2a; Appendix S1: Table S1). There was a signifi-
cant interaction between cue treatments and hours since
the beginning of the trial (lme, denominator df = 538.9,
t ratio = −4.96, p < 0.001), reflecting differing changes in
consumption rates from the beginning to the end of each
trial based on treatment; however, consumption was
highly variable across all treatments. Generally, urchins
exposed to a Pycnopodia cue increased their rate of con-
sumption over time (3 h: 0.039 ± 0.013 g h−1; 69 h: 0.084
± 0.012 g h−1 [mean ± SE]) while urchins not exposed to
a Pycnopodia cue decreased their rate of consumption
(3 h: 0.191 ± 0.032 g h−1; 69 h: 0.111 ± 0.020 g h−1).
Consumption rates became indistinguishable after 27 h
(Figure 2b,c). Mean hourly consumption of kelp at 27 h
was 0.055 ± 0.015 g h−1 (Pycnopodia cue) and 0.128
± 0.018 g h−1 (no Pycnopodia cue; lme, df = 69, t ratio =

−3.017, p = 0.00357), and at 33 h was 0.095 ± 0.018 g h−1
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(Pycnopodia cue) and 0.139 ± 0.021 g h−1 (no Pycnopodia
cue; lme, df = 69, t ratio = −1.574, p = 0.12).

Starvation experiment

Across all treatments, starved urchins spent an average of
59.8 ± 5.2% of the experiment moving within the arena,
while fed urchins spent an average of 86.7 ± SE 1.8% of
the experiment moving (Figure 3a). Urchin status
(fed, starved) was the primary single fixed factor to drive
differences in time spent moving across all treatments
(lme, denominator df = 41, t ratio = 4.83, p < 0.0001;
Appendix S1: Table S2). Various interactions between
urchin status and other effects were also statistically
important, notably urchin status and algal treatment
(lme, denominator df = 41, t ratio = −2.20, p = 0.0334),
and urchin status and time (lme, denominator df = 531,
t ratio = 3.14, p = 0.0018). Pycnopodia cue was only
significant in an interaction with urchin status and time
(lme, denominator df = 531, t ratio = 2.05, p = 0.0407).

Time spent interacting varied widely across treat-
ments with starved urchins spending an average of 32.1
± 8.3% of their time interacting, while fed urchins spent

only 9.2 ± 3.1% of their time interacting (Figure 3b).
Starved urchins in the kelp-present treatment spent much
more time interacting than other groups, regardless of
Pycnopodia cue (52.6 ± 17.0% cue not present; 61.4 ± 19.9%
cue present). Single fixed effects driving observed patterns
of interacting included urchin status (lme, denominator
df = 41, t ratio = −2.89, p = 0.0062), algal treatment (lme,
denominator df = 41, t ratio = −3.67, p = 0.0007), and time
(lme, denominator df = 531, t ratio = −2.74, p = 0.0063;
Appendix S1: Table S2). Various interactions were observed
between effects, though Pycnopodia cue was not included
in any of those interactions.

The total distance traveled by urchins was different
between starved (576 ± SE 46 cm) and fed (842 ± 42 cm)
urchins (lme, denominator df = 4.355, t ratio = 3.86,
p = 0.0154; Figure 3c; Appendix S1: Table S2), and no
other fixed effect other than urchin state contributed to
those differences.

Only starved urchins were ever observed to consume
the kelp in trials that contained the cue, and though they
tended to consume more when the Pycnopodia cue was
present (0.05 ± 0.024 g) than when it was not (0.03
± 0.01 g), this difference was not statistically significant
(Figure 3d).
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F I GURE 2 (a) Hourly consumption of kelp by urchins that were exposed (light orange) and not exposed (dark purple) to a Pycnopodia

cue across the 69-h experimental period. Regression lines show the best fit and 95% CI for each group. Differences in hourly feeding rate

(dotted red box) are shown at (b) 27 h and (c) 33 h, the time at which feeding rates become indistinguishable between the two treatments.

Error bars in panels b and c represent SE.
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DISCUSSION

We found that waterborne cues of the sunflower sea star
Pycnopodia decreased short-term feeding rates (~27 h) of
the purple sea urchin S. purpuratus, and changed urchin
movement patterns through NCEs. In 1-h behavior trials,
urchin feeding behavior was further modified by the star-
vation state of the urchins, with starved urchins moving
less than fed urchins, primarily to feed on kelp regardless

of predator cue presence or absence. Urchins that had
been starved for 7 weeks, and were in a metabolic state
similar to those in barrens, fed on kelp regardless of a
Pycnopodia cue. This suggests that starved urchins in
urchin barrens may continue to feed on kelp even as
Pycnopodia populations begin to rebound, which may
inhibit the role of NCEs on the recovery of kelp forest
habitats from an urchin barren state. However, urchins
that are not in a starved state (i.e., in kelp forests), may
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F I GURE 3 Proportional time spent by starved (light teal) and fed (dark orange) urchins across all treatment combinations in the

starvation experiment for (a) the proportional time moving and (b) the proportional time interacting. Large circles are overall means per

group per treatment, and transparent small circles are 5-min increment averages for individual urchins (12 points per urchin = 60-min trial).

Horizontal dashed lines indicate mean proportional time spent doing each behavior for all urchins in the behavioral control treatment

(no Pycnopodia, no kelp). (c) Total distance traveled in each of the four treatments by starved (light teal) and fed (dark orange) urchins.

Large circles indicated group mean for urchin conditions (starved, fed), and smaller points indicated values for individual urchins within

each treatment. (d) The total quantity of kelp consumed in kelp treatments were not different between Pycnopodia cue treatments between

starved urchins. Fed urchins never consumed kelp in any treatment. Error bars represent SE.
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reduce their feeding rate to engage in predator avoidance
strategies such as fleeing (Moitoza & Phillips, 1979), shel-
tering under larger conspecifics (Nishizaki & Ackerman,
2007), or crypsis (Scheibling & Hamm, 1991). The current
proliferation of S. purpuratus across the North American
west coast has coincided with kelp declines across much
of the same area. Direct consumption of kelp by urchins,
suppression of kelp juveniles, and stressors directly asso-
ciated with climate change, including warming waters,
have also been implicated in this decline (Beas-Luna
et al., 2020; McPherson et al., 2021; Pfister et al., 2018;
Rogers-Bennett & Catton, 2019). The amelioration of a
single-origin stressor in the form of over-grazing by
urchins, though only one of several multiple stressors,
could lower the tipping point for alternate stable states of
former kelp forests.

Pycnopodia is an important member of a diverse range
of benthic marine ecosystems throughout the NE
Pacific Ocean, and has been identified as an important
mesopredator in kelp forest communities (Burt et al., 2018;
Schultz et al., 2016). As Pycnopodia begin to recover from
sea star wasting disease, they may mitigate the impact of
urchins that are overpopulated in places where kelp has
been extirpated via direct consumption (Galloway
et al., 2023). The present study shows that there is a mea-
surable and significant NCE of Pycnopodia on S. purpuratus
feeding rates and behavior that may benefit kelp, particu-
larly on short time-scales; these NCEs may also have impor-
tant consequences for kelp ecosystems. As Pycnopodia
population densities begin to rebound, a larger proportion
of grazing sea urchins in subtidal communities will be sub-
ject to both direct consumptive and non-consumptive inter-
actions, potentially reducing grazing rates on a
population-wide and a per-capita basis. Although the single
mass of the average Nereocystis individual is ~1200 g
(Stekoll et al., 2006), well beyond the feeding capacity
of even a dense aggregation of urchins, even small bio-
mass removal, particularly from the stipe of canopy
kelps, can reduce kelp resistance to waves and cur-
rents, detaching the entire kelp plant and removing it
from the system (Duggins et al., 2001). The release of
urchins from the direct effects of Pycnopodia predation
is identified as one causal link leading to kelp forest
decline, as Pycnopodia may consume up to 0.68 ± 0.33
urchins per day (Galloway et al., 2023). Our work dem-
onstrates that, in addition to this direct consumptive
effect, the waterborne cues of nearby Pycnopodia likely
exert a NCE on urchins by more than halving grazing
rates when urchins are not starved. Even if Pycnopodia
in the field do not directly consume S. purpuratus at
rates as high as those observed in laboratory settings
(Galloway et al., 2023), the NCEs documented here
represent an important reduction in urchin feeding

and a potentially important TMII, in which Pycnopodia
benefit kelp by suppressing urchin grazing.

This study provides a quantitative link between
Pycnopodia and grazing urchins that provides insight into
our knowledge of how Pycnopodia-urchin dynamics may
play out in the field. Although few other studies have
explicitly explored these linkages in natural settings,
those that have found evidence that Pycnopodia can
significantly alter both urchin behavior through elicita-
tion of a multi-urchin “stampede” escape response
(Dayton, 1973), and benthic productivity and richness
through consumptive and non-consumptive interactions
with urchins (Duggins, 1983). Encounter rates and
Pycnopodia feeding preferences are an important com-
ponent in these Pycnopodia-urchin interactions, though
there is nearly no quantitative data on the former,
and relatively little on the latter. What we do know of
Pycnopodia feeding preferences suggests a preference
for bivalve and urchin prey, and a tendency to switch
between a role as a generalist predator and facultative
scavenger (Brewer & Konar, 2005; Mauzey et al., 1968;
Shivji et al., 1983). These patterns of consumption may
be robust across the geographic range of Pycnopodia
and suggest wide-scale predation of Pycnopodia on
urchins that may elicit a community-wide response.
However, there is a need to quantify these effects over
meaningful scales in order to parse out correlation
and causation between Pycnopodia-urchin interaction
and kelp loss, and this study lays the groundwork
for testing observed interactions on larger spatial and
temporal scales.

This work also broadens our knowledge of urchin
response to NCEs and how direct chemosensory detec-
tion of a sea star predator is sufficient to alter an urchins’
behavior. Sea urchins are known to be sensitive to chemi-
cal cues related to predation, though their response is
dose-dependent (Hagen et al., 2002). However, much
work to date on the sea urchin response to predation cues
has focused on their reaction to damaged conspecifics as
an alarm cue, rather than the presence of a predator itself
(Belleza et al., 2021; Campbell et al., 2001; Spyksma
et al., 2017; but see Matassa, 2010). While this is a good
proxy for actively feeding predators that may break or
otherwise damage urchins such as sea otters and spiny
lobsters, it does not account for the potential effects of
predators that are not actively feeding. When the effect of
a predator cue has been tested directly on urchins, it has
been done with gastropod (Hexaplex trunculus) and
arthropod (Panulirus interruptus) predators (Knight
et al., 2022; Pagès et al., 2021). Similar to Knight et al.
(2022), we found that starved urchins tended to consume
kelp whether a predator was present or not, though their
study did detect a difference in consumption between
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predator treatments in the case of well-fed urchins, while
in our starvation experiment fed urchins did not consume
kelp in any treatment, including those without a
Pycnopodia cue. This difference could be a result of several
factors, including differential response to particular preda-
tors (Pycnopodia vs. lobster), an effect of urchin density cues
in treatments (tested individually versus with conspecific
cue), or a statistical effect (n = 8 in Knight et al. (2022)
vs. n = 71 in this study). In other studies, urchins exposed
to gastropod predator cues have been shown to exhibit a
more linear and fast movement escape response than
urchin movement without the cue (Pagès et al., 2021). This
is in contrast with our study, where we did not detect a sta-
tistical difference in total distance traveled or proportion of
time spent moving in response to a Pycnopodia cue between
fed and starved urchins. However, starved urchins moved
slightly less during the starvation experiment compared
with fed ones, and there was a slight reduction in distance
traveled when fed urchins were exposed to a Pycnopodia
cue only. This raises the possibility that the response of
urchins to a predator cue is highly variable or dependent
upon other factors such as conspecific density, urchin size
variation, or shelter availability (Green, 2012; Nishizaki &
Ackerman, 2007).

Predator speed and hunting style may also affect the
response of urchins to a particular predator cue. Starved
urchins moved less than fed urchins regardless of
Pycnopodia cue presence, though this difference was not
significant and was most pronounced when there was no
predator cue but with kelp offered. This is most likely a
hunger-response by the starved urchins to the kelp cue,
which suggests that the non-consumptive waterborne
Pycnopodia cue was not sufficient to inhibit urchin feeding.
This may also be a metabolic consequence of the starved
urchins as they are known to divert energy from reproduc-
tion into maintenance and need access to food to quickly
restore metabolic activity and replenish somatic reserves
(Smith & Garcia, 2021). Both the hunger and metabolic
consequences of starvation could indicate that food access
despite the danger of predation is a stronger incentive than
predator avoidance for starved urchins.

The fact that starved urchins increased total distance
traveled in the case of a Pycnopodia cue compared with
no predator cue could suggest predator evasion, although
the overall patterns we observed were not strong enough
for unequivocal conclusions. The same is not true of the
fed urchins, which, while moving greater distances than
starved urchins in general, had decreased movement dis-
tances in the presence of a Pycnopodia cue alone. This
seems to be contrary to a predator flight response evident
in starved urchins, and these differences highlight the
need to further study indirect effects of sea star predators
on urchins.

Pycnopodia are generalist scavengers and opportunis-
tic predators that are highly mobile within their environ-
ment, and are known to elicit escape responses by green
and red sea urchins (Freeman, 2006; Montgomery, 2014;
Paul & Feder, 1975). This mobility may increase the
reach of the Pycnopodia’s NCEs, especially where
urchins are congregated in dense aggregations. Such
aggregations are most common in urchin barrens
(Rowley, 1989), which typically represents urchins in
starved conditions (Dolinar & Edwards, 2021; Smith &
Garcia, 2021). Other factors including urchin size
(Freeman, 2006), water temperature (Bonaviri et al., 2017),
urchin species identity (Duggins, 1983), and life stage
(Nishizaki & Ackerman, 2007) can result in different feed-
ing or escape behaviors.

This study demonstrated a non-consumptive behavioral
effect of Pycnopodia on S. purpuratus in laboratory condi-
tions, but the potential ecological impact of this effect
would be dependent upon in situ conditions and the ability
of urchins to detect Pycnopodia cues in nature, which are
subject to diffusion, wave action, and currents (Chivers
et al., 2013). It remains to be seen which long-term effects
Pycnopodia may have on urchins in the field, whether that
be persistent cryptic behavior (Spyksma et al., 2017), habitu-
ation (found in holothuroids; Hamel et al., 2021), or some-
thing in-between. Although we found short-term (3 h to
2 days) behavioral changes, the effects of concentration and
periodicity of predator cues require more study.

This work provides key findings on the effects of
NCEs between Pycnopodia and their S. purpuratus prey,
and contributes new knowledge to our understanding of
the indirect effects of Pycnopodia on kelp in controlled
conditions and generates testable hypotheses for future
corresponding work in natural reef settings. The results
show that reestablishment of Pycnopodia populations
could assist in maintaining healthy kelp forests in the
Northeast Pacific based on indirect predator–prey
interactions.
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