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index of consumer composition was a stronger predictor of bait
consumption than water temperature (either measured during the
assays or using mean annual sea surface temperatures; SI Ap-
pendix, Fig. S3), latitude, consumer density and biomass, or esti-
mates of ocean productivity, fishing pressure, or human
population density (Table 1). Consumer density and biomass only
became important predictors of consumption once we reduced the
dataset to include only those consumer families whose presence
was associated with increased consumption rates (Materials and
Methods and SI Appendix, Table S1). When viewed as a simple
network of causal relationships, the effect of thermal environment
on consumption rate was largely indirect, being mediated by
consumer community composition, and this remained true even
when allowing for a nonlinear relationship between consumption
rate and mean annual sea surface temperature (Fig. 3). Roughly
three-quarters of the total effect of thermal environment on bait
consumption flowed indirectly through differences in consumer
taxa in different climates.

Locations with high consumption rates had consumer assem-
blages composed largely of invertivores and omnivores that ac-
tively forage on or just above the seafloor (SI Appendix, Figs. S3
and S4). Actively swimming foragers should consume bait faster
due to increased encounter rates, all else being equal, and ar-
guably consumption by these foragers might rise more rapidly
with temperature than for more sedentary taxa. Video evidence
confirmed the association of key families with high consumption.
Porgies (family Sparidae), for example, removed bait at every
site where they were observed in video footage (SI Appendix,
Table S2) and the presence of this family showed the strongest
association with consumption rate in our analysis of community
composition (Fig. 2B and SI Appendix, Table S1).

The equatorial decline in bait consumption appears to be re-
lated to consumer community composition, as many of the ac-
tively foraging taxa associated with high consumption rates,
including porgies, half-beaks (Hemiramphidae), and grunts
(Haemulidae), were rare or absent at the sites closest to the
equator (SI Appendix, Fig. S5). Some of these consumer families
(e.g., porgies) are known from low-latitude waters but were not
recorded in our surveys (38). It is possible that larger enemies
reduce mesopredator abundance or restrict their foraging (39,
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40) to a greater extent at low latitudes, but we do not have any
direct evidence to support this hypothesis. Similarly, human
harvest or other activities could have restricted the abundance of
these key consumers, but we know of no reason to expect this to
be more intense at low latitudes, as many of the mid- and high-
latitude sites in this study are heavily influenced by human ac-
tivities, including overfishing (41). Alternatively, environmental
tolerances could limit consumer access or abundance in shallow
seagrass habitats at low latitude (42). There is currently little
evidence to evaluate these explanations.

Our finding that feeding intensity peaked at midlatitudes dif-
fers strongly from most previous studies on latitudinal gradients
in species interactions (5, 12, 31, 36). Nonlinear ecological
transitions between warm-temperate and subtropical locations
might help explain this result. These regions feature rapid
transition between thermal guilds of consumers with cool- vs.
warm-water affinities (37) and these biogeographic transitions
are correlated with shifts in the relative strength of bottom—up
vs. top—down processes that are directly and indirectly related to
temperature (17). We find it interesting that such transitions co-
occur in similar climatic regions: transitions in consumption from
this study (~19 to 22 °C SST), transitions in dominant fish guilds
[~21 to 25 °C SST (37)], and transitions in top-down vs.
bottom—up control [~17 to 20 °C temperature 0 to 200 m (17)].
These comparisons suggest that zones of biogeographic and
trophic transitions associated with climate are also areas of
transition for consumptive pressure by small mesopredators.

The weak and inconsistent differences we found in consump-
tion rates between seagrass and unvegetated sediment habitats
(81 Appendix, Figs. S6 and S7) was surprising given decades of
research showing that the structure provided by seagrasses and
other foundation species can strongly influence predator—prey
relationships (43-46). While we found no overall difference in
consumer composition between seagrass and unvegetated habi-
tats (permutation test, P = 0.75), consumer densities were gen-
erally higher inside than outside of seagrass habitat (SI Appendix,
Fig. S1). Thus, any protection provided by seagrass structure may
have been offset by consumer aggregation in seagrass. Yet
the consistency of latitudinal patterns in consumption between
the two habitats suggests that broad-scale environment and
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Fig. 2. Composition of consumer assemblages reflects global gradients in environmental temperatures and consumption rate. (A) Principal-coordinate
analysis, where locations of symbols reflect compositional differences among sites and habitats based on family-level presence-absence data. Symbol
color represents mean annual sea surface temperature (°C), and symbol size corresponds to bait consumption rate. (B) The same ordination showing scores for
consumer families driving differences in composition and consumption rate among sites. Symbol color represents average in situ temperature at sites where
the predator family was observed; label color represents positive (red), negative (purple), or nonsignificant (black) correlations with consumption rate; and
body length (width for crabs) is proportional to the magnitude of the correlation. Asterisks denote families that were seen feeding on bait in video footage.
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Table 1. Comparison of generalized linear mixed-effects models
predicting bait consumption by generalist consumers in two
shallow marine habitats

Candidate model K AICc AAICc w; R?
Taxonomic composition 3 703 0 0.932 0.51
Selected abundance 3 770 6.7 0.033 0.39
Sea surface remperature? 4 79.2 8.9 0.011 0.66
Selected biomass 3 796 9.3 0.009 0.38
Functional richness 3 799 9.5 0.008 0.26
Sea surface temperature 3 805 10.2 0.006 0.39
In situ temperature 3 828 12.5 0.002 0.31
Productivity 3 90.5 20.2 <0.001 0.12
Proportion of active foragers 3 90.5 20.2 <0.001 0.10
Body size 3 90.6 20.3 <0.001 0.10
Consumer species richness 3 908 20.5 <0.001 0.05
Functional evenness 3 91.4 211 <0.001 0.04
Intercept-only 2 920 21.7 <0.001 0
Trophic group 6 921 21.8 <0.001 0.27
Functional group richness 3 922 21.9 <0.001 0.04
Feeding type 3 924 22.1 <0.001 0.15
Habitat 3 931 22.8 <0.001 0.01
Lateral body shape 6 93.1 22.8 <0.001 0.23
Total biomass 3 932 22.9 <0.001 0.02
Effective number of species 3 932 22.9 <0.001 0.01
Total abundance 3 933 23.0 <0.001 0.02
Fishing pressure 3 936 233 <0.001 0.02
Water column use 6 937 234 <0.001 0.20
Human population density 3 940 23.7 <0.001 <0.01
Rao Q 3 940 23.7 <0.001  <0.01
Functional dispersion 3 940 23.7 <0.001 <0.01

Taxonomic composition refers to the first axis from the PCoA of consumer
assemblages (Fig. 2). Selected abundance and biomass refer to density or
biomass of fish and decapod families selected through constrained ordina-
tion (Fig. 2B and SI Appendix, Table S1). Productivity refers to remotely
sensed mean annual chlorophyll a. Habitat categorically relates seagrass
and unvegetated habitats. Abundance, biomass, and human population
density were logjp-transformed. Body size, trophic group, lateral body
shape, and water column use are community-weighted mean trait values
by site and habitat. We provide marginal pseudo-R? values for comparison
of fixed effects. For model comparison, we only included data from sites
with the full complement of predictors (27 of 42 sites).

consumer biogeography had stronger influences on consumption
than local differences in habitat structure.

Our feeding assay used identical bait at all sites to isolate the
effect of consumer activity from the behavioral and morpho-
logical traits of prey, which vary widely across space. No single
bait will attract all predators equally; ours targeted the small- to
medium-sized generalists that dominate many shallow marine
habitats. Thus, the consumption rates that we describe are rel-
ative measures of one-half of a predator-prey interaction
(i.e., consumption in the absence of prey behavior and other trait
variation). Whereas this design cannot completely characterize
species interactions, standardization more rigorously estimates
how potential consumption varies across the globe. Our assays
did not measure top—down control per se, but the kind of in-
formation we gathered is critical to understanding trophic in-
teractions, including cascading effects in seagrass ecosystems (30,
47, 48), because it measures the willingness of consumers to eat
prey of a certain size. The consistency of our results across ocean
basins and hemispheres, along with similar recent findings for
pelagic top predators (49), suggests that the midlatitude peak in
marine consumption is indeed general. The importance of par-
ticular predator taxa and traits in the geography of consumption
we found parallels the outsized role of endothermy in the ef-
fectiveness of marine predators (e.g., refs. 50 and 51), including
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in some seagrass meadows (47, 48). We focused on the smaller
ectothermic consumers that consume herbivorous invertebrates
that can be critical to seagrass persistence (30), but these are
potential prey of larger endotherms like fishing birds and small
marine mammals, so endothermy might well influence the
broader food webs we studied. However, given that many en-
dothermic predators are most abundant and diverse in cooler
regions of the world’s oceans (51), we would expect the distri-
bution of their collective feeding intensity to differ from the
pattern we observed.

Changing climate, overfishing, and global species introduc-
tions are altering the biogeography of marine life and the com-
position of communities (52, 53), with wide-ranging effects on
ecosystems (54), including in seagrass habitats (55). Shifting
biogeography of consumers can alter community and ecosystem
structure and processes (56, 57) independent of temperature, as
we show here. Simultaneously, warming can directly influence
the physiology of ectothermic consumers [e.g., metabolic de-
mand, activity (58)]. We show that spatial variation in water
temperature influences marine trophic processes mainly indi-
rectly by changing consumer community composition. The
hump-shaped relationship between temperature and consump-
tion we found suggests that predation and trophic transfer may
intensify at middle to high latitudes and decline near the equator
as the world’s oceans warm and species continue to shift their
ranges. Such shifts in species ranges and biomass distributions
could lead to large changes in consumption, with repercussions
for community structure and trophic flows through marine food
webs. It is already clear that many ectotherms are expanding or
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Fig. 3. Predator composition mediates the effect of thermal environment
on consumption rates. (A-C) Bivariate relationships between consumer
composition (PCoA1, Fig. 2A), thermal environment (SST), and consumption
rate. Lines show predictions from models used in mediation analysis (A,
linear regression; B, logistic regression; C, generalized additive modeling).
(D) Paths represent causal hypotheses about relationships. Numbers next to
paths leading to and from consumer composition are standardized regres-
sion coefficients and SEs. Numbers above and below the path from thermal
environment to consumption rate are estimated degrees of freedom and y?
values for the smooth term in the presence and absence of mediation, re-
spectively. Numbers above the path diagram are estimates of the direct and
indirect (mediation) effects with 95% bootstrapped Cls.
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contracting their ranges with climate change (59, 60). Our find-
ings suggest that such distributional shifts may affect ecological
processes as much or more than those predicted based only on
temperature effects on metabolism.

Materials and Methods

We assessed rates of consumption using a simple, standardized field assay
(61). We tethered a 1- to 1.3-cm-diameter piece of dried squid mantle with
monofilament to a fiberglass garden stake (hereafter, “squidpop”) that we
inserted into the sediment such that the bait dangled 20 to 30 cm above the
sediment surface in or just above the seagrass canopy. At most sites, we
deployed 20 to 30 squidpops within a seagrass meadow and 20 to 30
squidpops in nearby unvegetated sediments (S/ Appendix, Table S3). We
checked the squidpops for the presence (1) or absence (0) of bait after 1 h
and again after 24 h. Most sites repeated this assay for a total of three
deployments in each of the two habitat types, and measured water tem-
perature during each deployment.

To characterize variation in environments across the range of the study, we
drew upon several publicly available datasets with global-scale variables of
interest. We accessed sea surface temperature and chlorophyll records using
Bio-ORACLE (62), which packages data collected by the Aqua-MODIS satel-
lite. We used mean annual SST because it showed stronger relationships
with consumption rate than maximum or minimum annual SST and it sum-
marizes well the differences between thermal conditions across the globe
(Fig. 1). Most assays were conducted during the summer, but differences in
timing of assays generated variation in in situ temperature that altered the
rank order of our estimates of the thermal environments compared with sea
surface temperature, making nearby sites appear less similar environmen-
tally (Fig. 3). We used mean annual chlorophyll a as a proxy for surface ocean
primary productivity across sites. We also accessed data on human pop-
ulation densities from the Gridded Population of the World (63), which we
used as a proxy for local human disturbance. Finally, we accessed fishing
pressure data from the Sea Around Us project (64) using the R package
seaaroundus (65).

At most sites (30 of 42), we also conducted consumer surveys in the areas
adjacent to feeding assays. These surveys used hand-pulled seines in seagrass
and unvegetated sediment habitats to sample epibenthic consumers (mainly
fishes, but also large crustaceans) adjacent to feeding assays. All consumers
were identified, counted, and released. The total lengths of the first 25 in-
dividual fish of each species were also measured. We used these data to
estimate consumer density, size distribution, biomass, and diversity, as well
as to generate a species list for each site. Species lists from five additional
sites were added using data from video footage and diver transects (FL,
India, Italy, Yucal, Yuca2; Movie S1). Biomass estimates were calculated
using length-weight regressions available in FishBase (66).

For each of the squidpop assays, we independently fitted an exponential
decay model and estimated consumption rate (bait loss through time) using
the slope parameter. We then used the resulting rate estimates as data points
in subsequent analysis.

We predicted individual consumption rates in generalized linear mixed-
effects models (logit link, random intercepts for sites) using a variety of
potential abiotic and biotic drivers, and compared models using the Akaike
information criterion corrected for small sample size (AlCc) calculated using
the R package bbmle (67). We also explored a variety of polynomial terms
and LOESS (locally estimated scatterplot smoothing) curves to investigate
possibilities of nonlinear relationships between temperature and consump-
tion, although for model comparison we only included linear terms. We
restricted the data used in model comparison to the 27 sites for which we
had the full complement of explanatory variables. For simplicity, and be-
cause our analysis was largely exploratory using a large set of candidate
explanatory variables, we compared models with individual predictor vari-
ables only. All mixed models were fitted using maximum likelihood in the
package Ime4 in R (68).

When estimating consumer species (alpha) diversity, we used both species
richness and Hurlbert’s probability of interspecific encounter as effective
numbers of species (69). We also wanted to investigate changes in consumer
community composition across sites (beta diversity), but given the scale of
our analysis and the large biogeographic gradients we captured, comparing
composition in terms of species identity was not possible. Species-level
overlap was low among sites, especially across ocean basins and hemi-
spheres, so we chose to compare composition (presence-absence) at the
level of families across sites using Raup—Crick dissimilarities. While this metric
has been used to investigate small spatial scale differences in species com-
position within regions (70), we use it here to investigate global among-site
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turnover of consumers at higher taxonomic levels. In order to visualize and
quantify major axes of community variation, we used principal-coordinate
analysis to ordinate consumer communities based on their dissimilarities,
and then assess how these dissimilarities related to the thermal environment
and consumption rate. We used a combination of unconstrained (PCoA) and
constrained (canonical analysis of principal coordinates) techniques in this
analysis. Unconstrained ordination reduces dimensionality of the dataset by
finding orthogonal axes of decreasing variation in the dataset, while con-
strained ordination uses a regression-based approach to define a set of axes
of interest a priori based on explanatory variables (71). We used the resul-
tant axes from unconstrained ordination (PCoA) as explanatory variables in
the models described above because the unconstrained ordination does not
require a priori assumptions about which factors are important. We also
assessed relationships between consumer community composition and
thermal environment by constraining the first ordination axis to SST or
in situ temperature. Multivariate analyses were performed using the R
package vegan (72).

In order to identify which consumer families were positively and negatively
associated with consumption intensity across sites, we constrained the first
axis of the ordination to align with our estimates of consumption rate. Then
we selected families that mapped onto the positive side of this axis as can-
didate taxa driving spatial variation in consumption rate, and calculated the
density and biomass of these consumers at sites with seining data (27 of 42
sites). Finally, we compared the results from multivariate analysis to direct
observations of squidpop attacks and bait removal from video footage
captured at 14 sites (S/ Appendix, Table S2).

To explore which predator traits might explain feeding intensity in our
assays, we scored six traits for each taxon in our dataset (416 morphospecies in
103 taxonomic families). Four traits were derived from FishBase [feeding
habit, lateral body shape (73)] and the Reef Life Survey [trophic group, water
column usage (74)]. A fifth binomial trait scored whether each taxon is an
actively swimming forager or tends toward ambush or sit-and-wait behavior,
either on the benthos or in the water column. We applied the most common
value of this trait to all taxa in each family, but we acknowledge that vari-
ation in foraging activity can occur within families. Traits missing in these
databases were filled using expert opinion of coauthors and available trait
information from related taxa. A sixth continuous trait describing body size
as the average total length of each taxon (carapace width for crabs) was
calculated from our seining data. Whereas published total length estimates
are available for many taxa, we opted to use length estimates from our own
dataset because many taxa only utilize seagrass and other nearshore habi-
tats for part of their development, when they may differ greatly from the
species’ maximum size. Using the R package FD (75), we calculated
community-level weighted means of trait values to derive estimates of av-
erage conditions for each of the six individual traits in each site and habitat
combination in the dataset, and we calculated a variety of functional di-
versity metrics (functional richness, functional dispersion, functional even-
ness, functional diversity, and Rao’s Q) following published methods (75-77).
For all consumer functional diversity metrics and all community-level
weighted means except body size, we used presence-absence data instead
of weighting by relative abundance so that we could include sites with
seining and video data. We did weight mean consumer body size estimates
by relative abundance because we only had size estimates from seine sam-
pling. Weighting by abundance did not qualitatively change the results. We
regressed each functional diversity metric and each community-level
weighted mean trait against consumption rate individually using the lin-
ear mixed-effects models described above.

We tested whether consumer composition mediated the influence of
mean annual SST on consumption rates using the package mediation in R (78).
Because we found support for a hump-shaped relationship between SST and
consumption rate, we tested whether consumer composition mediated the
nonlinear relationship between temperature and consumption rate (using
33 of 42 sites with all three variables). We modeled the relationships using 1)
smooth terms for SST on consumption rate and a linear term for composition
(PCoA1) on consumption rate in a generalized additive model [GAM; logit
link function; R package mgcv (79)] and 2) a generalized linear model for SST
on composition. We report the standardized linear regression coefficients,
estimated degrees of freedom for smoothed GAM terms (and associated y*
statistic), estimates of the mediation effect and direct effect, and the pro-
portion of the direct effect of SST mediated by composition for the second
mediation analysis, along with 95% Cls around estimates of the direct effect,
mediation effect, and proportion mediated. All models in mediation analysis
used data that were averaged at the level of habitats within sites, which is
the lowest level of pairwise comparisons we can make between squidpop
assays and consumer composition.
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